Analysis of healthcare coverage: A data mining approach

نویسندگان

  • Dursun Delen
  • Christie M. Fuller
  • Charles McCann
  • Deepa Ray
چکیده

The existing disparity in the healthcare coverage is a pressing issue in the United States. Unfortunately, many in the US do not have healthcare coverage and much research is needed to identify the factors leading to this phenomenon. Hence, this study aims to examine the healthcare coverage of individuals by applying popular machine learning techniques on a wide-variety of predictive factors. Twentythree variables and 193,373 records were utilized from the 2004 behavioral risk factor surveillance system survey data for this study. The artificial neural networks and the decision tree models were developed and compared to each other for predictive ability. The sensitivity analysis and variable importance measures are calculated to analyze the importance of the predictive factors. The experimental results indicated that the most accurate classifier for this phenomenon was the multi-layer perceptron type artificial neural network model that had an overall classification accuracy of 78.45% on the holdout sample. The most important predictive factors came out as income, employment status, education, and marital status. Using two popular machine learning techniques, this study identified the factors that can be used to accurately classify those with and without healthcare coverage. The ability to identify and explain the reasoning of those likely to be without healthcare coverage through the application of accurate classification models can potentially be used in reducing the disparity in healthcare coverage. 2007 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Fraud and Abuse Detection in General Physician Claims: A Data Mining Study

Background We aimed to identify the indicators of healthcare fraud and abuse in general physicians’ drug prescription claims, and to identify a subset of general physicians that were more likely to have committed fraud and abuse.   Methods We applied data mining approach to a major health insurance organization dataset of private sector general physicians’ prescription claims. It involved 5 ste...

متن کامل

Using Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach

Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...

متن کامل

Identification of the Patient Requirements Using Lean Six Sigma and Data Mining

Lean health care is one of new managing approaches putting the patient at the core of each change. Lean construction is based on visualization for understanding and prioritizing imporvments. By using only visualization techniques, so much important information could be missed. In order to prioritize and select improvements, it’s essential to integrate new analysis tools to achieve a good unders...

متن کامل

A new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining

Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...

متن کامل

Applying a decision support system for accident analysis by using data mining approach: A case study on one of the Iranian manufactures

Uncertain and stochastic states have been always taken into consideration in the fields of risk management and accident, like other fields of industrial engineering, and have made decision making difficult and complicated for managers in corrective action selection and control measure approach. In this research, huge data sets of the accidents of a manufacturing and industrial unit have been st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2009